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Key idea
4 )

* |ncreasing popularity of dialogue modelling approaches Question:
Can we adapt neural conversation models to operate on

incremental units instead of fixed sequences of tokens?

$

based on recurrent neural networks

e These neural models construct a latent representation
of the dialogue state on a token-by-token basis.

— conceptual proximity with incremental approaches

. . Yes!
to spoken dialogue processing

The presented model is able to process incremental units (1Us)

 However, in practice, these neural models are always one at the time, through a sequence of updates
applied to fully fledged sentences. .. and commit/revoke IUs at any point during processing
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* Proof-of-concept experiment with the TAKE —] == * The history of previous state vectors is kept in memory. This
corpus (Wizard-of-Oz study where participants - o allows the system to backtrack to previous (not-yet-committed)
had to instruct the system to select one tile 1 ] state vectors whenever incremental units are revoked.
from a virtual Pentomino board through . . L .
hal d Ot 4 nointi . \ . e To deal with uncertainty/ambiguities (coming from e.g. speech
Verbal Gestrptions ahd pointing sestures — recognition), we can interpolate the vectors: If d. , represent
* The neural network for this visual reference =4 the dialogue vector at time t-1 and w; a new word hypothesis
resolution task relies on the dot product of =y platc with probability p, the updated vector d. can be defined as
visual and utterance vectors: gin=
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 Training on positive and negative examples (the distractors in each scene)
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e The streaming Google Speech APl was used to obtain incremental operations
from the TAKE episodes (insertions, revoke and commit operations).
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Percentage of processed incremental units

o After each operation, the neural model was triggered to update the utterance
vector and determine the fitness scores of each visual object
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[Final accuracy after processing the full utterances:
0.67 for noisy ASR, 0.87 for manual transcriptions] J

Accuracy score on prediction of target object
—
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e The accuracy (defined as the selection of the right target object among 15
\objects in each scene) increases as more words are processed.
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