Evaluating the disclosure risk of anonymized documents via a machine learning-based re-identification attack

Publication details

  • Journal: Data mining and knowledge discovery, vol. 38, p. 4040–4075–35, 2024
  • International Standard Numbers:
    • Printed: 1384-5810
    • Electronic: 1573-756X
  • Link:

The availability of textual data depicting human-centered features and behaviors is crucial for many data mining and machine learning tasks. However, data containing personal information should be anonymized prior making them available for secondary use. A variety of text anonymization methods have been proposed in the last years, which are standardly evaluated by comparing their outputs with human-based anonymizations. The residual disclosure risk is estimated with the recall metric, which quantifies the proportion of manually annotated re-identifying terms successfully detected by the anonymization algorithm. Nevertheless, recall is not a risk metric, which leads to several drawbacks. First, it requires a unique ground truth, and this does not hold for text anonymization, where several masking choices could be equally valid to prevent re-identification. Second, it relies on human judgements, which are inherently subjective and prone to errors. Finally, the recall metric weights terms uniformly, thereby ignoring the fact that the influence on the disclosure risk of some missed terms may be much larger than of others. To overcome these drawbacks, in this paper we propose a novel method to evaluate the disclosure risk of anonymized texts by means of an automated re-identification attack. We formalize the attack as a multi-class classification task and leverage state-of-the-art neural language models to aggregate the data sources that attackers may use to build the classifier. We illustrate the effectiveness of our method by assessing the disclosure risk of several methods for text anonymization under different attack configurations. Empirical results show substantial privacy risks for most existing anonymization methods.