Senior Research Scientist
Martin Tveten
- Department SAMBA
- Phone number +47 22 85 25 80
- E-mail tveten@nr.no
Research area
Projects
- Machine learning
- Statistical modelling
Anomaly detection in wind and hydropower plants
- Statistical modelling
- Machine learning
Automatic detection and prediction of anomalies in complex IT systems
- Machine learning
- Statistical modelling
Using audio as data
Publications
- 26 publications found
- Publisher
Martin Tveten; Christopher Risi; Franz Kiraly; skchange & sktime – time series anomaly detection, changepoint detection, segmentation 2024. Lecture
Per August Jarval Moen; Ingrid Kristine Glad; Martin Tveten; Efficient sparsity adaptive changepoint estimation Electronic Journal of Statistics, vol. 18, pp. 3975 4038 63 , (ISSN 1935-7524 1935-7524 ), doi: https://doi.org/10.1214/24-EJS2294 , 2024. Scientific article
Martin Tveten; skchange: Fast time series segmentation and collective anomaly detection 2024. Lecture
Martin Tveten; skchange: A python toolbox for fast time series segmentation and anomaly detection 2024. Scientific lecture
Martin Tveten; Final report for the PReVENT IPN project -- numerical data 2023. Report
Martin Tveten; Scalable changepoint and anomaly detection with an application to condition monitoring 2023. Scientific lecture
Martin Tveten; Industrial applications of changepoint detection: Anomalies, on-off-patterns and concept drift 2023. Scientific lecture
Ingrid Kristine Glad; Martin Tveten; Efficient sparsity adaptive changepoint estimation arXiv, doi: https://doi.org/10.48550/arXiv.2306.04702 , 2023. Scientific article
Per August Jarval Moen; Ingrid Kristine Glad; Martin Tveten; Efficient sparsity adaptive changepoint estimation arXiv, doi: https://doi.org/10.48550/arXiv.2306.04702 , 2023. Scientific article
Episode 15: Krafthack 2022: Suksess med Rema 1000-strategi , 2022. Popular science hosting
Martin Tveten; Changepoints in the wild 2022. Scientific lecture
Martin Tveten; Idris A. Eckley; Paul Fearnhead; Scalable change-point and anomaly detection in cross-correlated data with an application to condition monitoring Annals of Applied Statistics, vol. 16, pp. 721 743 22 , (ISSN 1932-6157 1941-7330 ), doi: https://doi.org/10.1214/21-AOAS1508 , 2022. Scientific article
Martin Tveten; Scalable changepoint and anomaly detection in cross-correlated data 2021. Scientific lecture
Martin Tveten; Scalable change and anomaly detection in cross-correlated data 2021. Doctor dissertat
Martin Tveten; Introduction to change detection 2021. Scientific lecture
Kristoffer Herland Hellton; Martin Tveten; Morten Stakkeland; Solveig Engebretsen; Ola Haug; et al. Real-time prediction of propulsion motor overheating using machine learning Journal of Marine Engineering & Technology, pp. 9 , (ISSN 2046-4177 2056-8487 ), doi: https://doi.org/10.1080/20464177.2021.1978745 , 2021. Scientific article
Martin Tveten; Scalable changepoint and anomaly detection in cross-correlated data 2021. Scientific lecture
Episode 9: Hvordan kan vi oppdage katastrofale avvik? Med gjest Martin Tveten , 2021. Popular science hosting
Martin Tveten; Å studere matematikk ved UiO 2019. Lecture popular
Martin Tveten; Online detection of sparse changes in high-dimensional data streams using tailored projections 2019. Scientific lecture
Martin Tveten; Which principal components are most sensitive in the change detection problem? Stat, doi: https://doi.org/10.1002/sta4.252 , 2019. Scientific article
Jonas Moss; Martin Tveten; kdensity: An R package for kernel density estimation with parametric starts and asymmetric kernels Journal of Open Source Software (JOSS), doi: https://doi.org/10.21105/joss.01566 , 2019. Scientific article
Martin Tveten; Ingrid Kristine Glad; Online Detection of Sparse Changes in High-Dimensional Data Streams Using Tailored Projections , 2019. Report
Martin Tveten; Tailoring PCA for detecting sparse changes in multi-stream data 2018. Scientific lecture
Martin Tveten; Tailoring PCA for detecting sparse changes in multi-stream data 2018. Poster
Martin Tveten; Andreas Brandsæter; Ingrid Kristine Glad; Anomaly detection in maritime data streams 2017. Scientific lecture